Software and Memory

Wendy Hui Kyong Chun

1 On Sourcery and Source Codes

The spirit speaks! I see how it must read,
And boldly write: “In the beginning was the Deed!”

—Johann Wolfgang Goethe'

Software emerged as a thing—as an iterable textual program—through a process
of commercialization and commodification that has made code logos: code as
source, code as true representation of action, indeed, code as conflated with, and
substituting for, action.? Now, in the beginning, is the word, the instruction. |
Software as logos turns pré}?am into a noun—it turns process in time into_process
in_(text) space. In other words, Manfred Broy’s software “pioneers,” by making
software easier to visualize, not only sought to make the implicit explicit, they
also created a system in which the intangible and implicit drives the explicit.
They thus obfuscated the machine and the process of execution, making software
the end all and be all of computation and putting in place a powerful logic of
sourcery that makes source code—which tellingly was first called pseudocode—
a fetish.’

This chapter investigates the implications of code as logos and the ways in which
this simultaneous conflation and separation of instruction from execution, itself a
software effect, is constantly constructed and undone, historically and theoretically.
This separation is crucial to understanding the power and thrill of programming, in

particular the nostalgic fantasy of an all-powerful programmer, a sovereign neoliberal_
subject who magically transtorms wordsinta_things. It is also key to addressing the

nagging doubts and frustrations experienced by programmers: the sense that we are
slaves, rather than masters, clerks rather than managers—that, because “code is law,”
the code, rather than the programmer, rules. These anxieties have paradoxically led to
the romanticization and recuperation of early female operators of the 1946 Electronic
Numerical Integrator and Computer (ENIAC) as the first programmers, for they, unlike
us, had intimate contact with and knowledge of the machine. They did not even need
code: they engaged in what is now called “direct programming,” wiring connections

20 Chapter 1

and setting values. Back then, however, the “master programmer” was part of the
machine (it controlled the sequence of calculation); computers, in contrast, were
human. Rather than making programmers and users either masters or slaves, code as
logos establishes a perpetual oscillation between the two positions: every move to
empower also estranges.

This chapter, however, does not call for a return to direct programming or hardware
algorithms, which, as I argue in chapter 4, also embody logos. It also does not endorse
such a call because the desire for a “return” to a simpler map of power drives source

M y code as logos. The point is not to break free from this sourcery, but rather to play with
the ways in which logos also invokes “spellbinding powers of enchantment, mesmer-
al * izing fascination, and alchemical trans—frmmatio,n)”“ The point is to make our comput-
M)’B/ ers more productively spectral by exploiting the unexpected possibilities of source code
as fetish. As a fetish, source code produces surprisingly “deviant” pleasures that do
not end where they should. Framed as a re-source, it can help us think through the
machinic and human rituals that help us imagine our technologies and their execu-
tions. The point is also to understand how the surprising emergence of code as logos
shifts early and still-lingering debates in new media studies over electronic writing’s
relation to poststructuralism, debates that the move to software studies has to some
extent sought to foreclose.” Rather than seeing technology as simply fulfilling or
killing theory, this chapter outlines how the alleged “convergence” between theory
and technology challenges what we thought we knew about logos. Relatedly, engaging
source code as fetish does not mean condemning software as immaterial; rather, it
means realizing the extent to which software, as an “immaterial” relation become
thing, is linked to changes in the nature of subject-object relations more generally.
Software as thing can help us link together minute machinations and larger flows of
power, but only if we respect its ability to surprise and to move.

Source Code as Logos

To exaggerate slightly, software has recently been posited as the essence of new media
and knowing software a form of enlightenment. Lev Manovich, in his groundbreaking
The Language of New Media, for instance, asserts: “New media may look like media,
but this is only the surface. . . . To understand the logic of new media, we need to
turn to computer science. It is there that we may expect to find the new terms, catego-
ries, and operations that characterize media that become programmable. From media
studies, we move to something that can be called ‘software studies’—from media theory to
software theory.”® This turn to software—to the logic of what lies beneath—has offered
a solid ground to new media studies, allowing it, as Manovich argues, to engage pres-
ently existing technologies and to banish so-called “vapor theory”—theory that fails
to distinguish between demo and product, fiction and reality—to the margins.’

On Sourcery and Source Codes 21

This call to banish vapor theory, made by Geert Lovink and Alexander Galloway
among others, has been crucial to the rigorous study of new media, but this rush
away from what is vapory—undefined, set in motion—is also troubling because vapo-
riness is not accidental but rather essential to new media and, more broadly, to
software. Indeed, one of this book’s central arguments is that a rigorous engagement
with software makes new media studies more, rather than less, vapory. Software, after
all, is ephemeral, information ghostly, and new media projects that have never, or
barely, materialized are among the most valorized and cited.® (Also, if you take the
technical definition of information seriously, information increases with vapor, with
entropy). This turn to computer science also threatens to reify knowing software as
truth, an experience that is arguably impossible: we all know some software, some
programming languages, but does anyone really “know” software? What could this
knowing even mean? Regardless, from myths of all-powerful hackers who “speak the m‘,uu.h N
language of computers as one does a mother tongue”® or who produce abstractions of -\?'
that release the virtual' to perhaps more mundane claims made about the radicality
of open source, knowingme right) software has been made analogous to S (2
man’s release from his self-incurred tutelage."' As advocates of free and open source
software make clear, this critique aims at political, as well as epistemological, eman-
cipation. As a form of enlightenment, it is a stance of how not to be governed like
that, an assertion of an essential freedom that can only be curtailed at great cost.'?

Knowing software, however, does not simply enable us to fight domination or
rescue software from “evil-doers” such as Microsoft. Software, free or not, is embedded
and participates in structures of knowledge-power. For instance, using free software

_/dggi not mean escaping from power, but rather engaging it differently, for free and

open source software profoundly privatizes the public domain: GNU copyleft—which
allows one to use, modify, and redistribute source code and derived programs, but
only if the original distribution terms are maintained—seeks to fight copyright by
spreading licences everywhere."* More subtly, the free software movement, by linking
freedom and freely accessible source code, amplifies the power of source code both
politically and technically. It erases the vicissitudes of execution and the institutional
and technical structures needed to ensure the coincidence of source code and its execu-
tion. This amplification of the power of source code also dominates critical analyses
of code, and the valorization of software as a “driving layer” conceptually constructs
software as neatly layered.

Programmers, computer scientists, and critical theorists have reduced software to
a recipe, a set of instructions, substituting space/text for time/process. The current
common-sense definition of software as a “set of instructions that direct a computer
to do a specific task” and the OED definition of software as “the programs and pro-
cedures required to enable a computer to perform a specific task, as opposed to the
physical components of the system” both posit software as cause, as what drives

Chapter 1

computation. Similarly, Alexander Galloway argues, “code draws a line between what
is material and what is active, in essence saying that writing (hardware) cannot dy

W\y anything, but must be transformed into code (software) to be effective. . . . Code is
a language, but a very special kind of language. Code is the only language that Is execut-

1924
A W iﬁ’l"_ .. code is the first language that actually does what it says.”'* This view of
software as “actually doing what it says” (emphasis added) both separates instruction
from, and makes software substitute for, execution. It assumes no difference between
source code and execution, between instruction and result. That is, Galloway takes
the principles of executable layers (application on top of operating system, etc.) and
grafts it onto the system of compilation or translation, in which higher-level languages
are transformed into executable codes that are then executed line by line. By doing
what it “says,” code is surprisingly logos. Like the King’s speech in Plato’s Phaedrus,
it does not pronounce knowledge or demonstrate it—it transparently pronounces
itself.” The hidden signified—meaning—shines through and transforms itself into
action. Like Faust’s translation of logos as “deed,” code is action, so that “in the
beginning was the Word, and the Word was with God, and the Word was God.”'¢
Not surprisingly, many scholars critically studying code have theorized code as
performative. Drawing in part from Gafloway, N. Katherine Hayles in My Mother Was
a Computer: Digital Subjects and Literary Texts distinguishes between the linguistic
performative and the machinic performative, arguing:

Code that runs on a machine is performative in a much stronger sense than that attributed to
language. When language is said to be performative, the kinds of actions it “performs” happen
in the minds of humans, as when someone says “I declare this legislative session open” or “]
pronounce you husband and wife.” Granted, these changes in minds can and do reach in
behavioral effects, but the performative force of language is nonetheless tied to the external
changes through complex chains of mediation. By contrast, code running in a digital computer
causes changes in machine behavior and, through networked ports and other interfaces, may
initiate other changes, all implemented through transmission and execution of code."’

The independence of machine action—this autonomy, or automatic executability of
code—is, according to Galloway, its material essence: “The material substrate of code,
which must always exist as an amalgam of electrical signals and logical operations
in silicon, however large or small, demonstrates that code exists first and foremost
as commands issued to a machine. Code essentially has no other reason for being
than instructing some machine in how to act. One cannot say the same for the
natural languages.”'® Galloway thus concludes in “Language Wants to Be Overlooked:
On Software and Ideology,” “to see code as subjectively performative or enunciative
is to anthropomorphize it, to_pr it onto the Tubri psychology, n
to understand it through'its own logic of ‘calculation’ or ‘command.

To what eéxterit, however, can source code be understood outside of anthropomor-
phization? Does understanding voltages stored in memory as commands/code not

On Sourcery and Source Codes 23

already anthropomorphize the machine? The title of Galloway’s article, “Language
Wants to Be Overlooked” (emphasis mine), inadvertently reveals the inevitability of
this anthropomorphization. How can code/language want—or most revealingly say—
anything? How exactly does code “cause” changes in machine behavior? What media-
tions are necessary for this insightful yet limiting notion of code as inherently

executable, as conflating meaning and action?

Crafty Sources

To make the argument that code is automatically executable, the process of execution
itself not only must be erased, but source code must also be conflated with its execut-
able version. This is possible, Galloway argues, because the two “layers” of code can
be reduced to each other: “uncompiled source code is logically equivalent to that
same code compiled into assembly language and/or linked into machine code. For
example, it is absurd to claim that a certain value expressed as a hexadecimal (base
16) number is more or less fundamental than that same value expressed as binary
(base 2) number. They are simply two expressions of the same value.””” He later
elaborates on this point by drawing an analogy between quadratic equations and

software layers:
One should never understand this “higher” symbolic machine as anything empirically differ-
ent from the “lower” symbolic interactions of voltages through logic gates. They are complex
aggregates yes, but it is foolish to think that writing an “if/then” control structure in eight
lines of assembly code is any more or less machinic than doing it in one line of C, just as the
same quadratic equation may swell with any number of multipliers and still remain balanced.

The relationship between the two is technical.”

According to Galloway’s quadratic equation analogy, the difference between a compact
line of higher-level programming code and eight lines written in assembler equals the
difference between two equations, in which one contains coefficients that are multi-
ples of the other. The solution to both equations is the same: one equation is the same

as the other. .
This reduction, however, does not capture the difference between the various

instantiations of code, let alone the empirical difference between the higher symbolic
machine and the lower interactions of voltages (the question here is: where does one
make the empirical observation?). To state the obvious, one cannot run source code:
it must be compiled or interpreted. This compilation or interpretation—this making
executable of code—is not a trivial action; the compilation of code is not the same as
translating a decimal number into a binary one. Rather, it involves instruction explo-
sion and the translation of symbolic into real addresses. Consider, for example, the
instructions needed for adding two numbers in PowerPC assembly language, which is
one level higher than machine language:

24

Chapter 4
li 13,1 *load the number 1 into register 3
i 142 *load the number 2 into register 4
add 15,14,13 *add r3 to r4 and store the result in r5

stw 15,sum(rtoc) *store the contents of r5 (i.e., 3) into the memory location
*called “sum” (where sum is defined elsewhere)
blr *end of this snippet of code?

This explosion is not equivalent to multiplying both sides of a quadratic equation by
the same coefficient or to the difference between E and 15. It is, instead, a breakdown
of the steps needed to perform a simple arithmetic calculation; it focuses on the move.
ment of data within the machine. The relaticnship between executable and higher-
level code is not that of mathematical identity but rather logical equivalence, which
can involve a leap of faith. This is clearest in the use of numerical methods to turn
integration—a function performed fluidly in analog computers—into a series of
simpler, repetitive arithmetical steps.

This translation from source code to executable is arguably as involved as the execu-
tion of any command, and it depends on the action (human or otherwise) of compil-
ing/interpreting and executing. Also, some programs may be executable, but not all
compiled code within that program is executed; rather, lines are read in as necessary.
Software is “layered” in other words, not only because source is different from object,
but also because object code is embedded within an operating system.

So, to spin Galloway’s argument differently, a technical relation is far more complex

M n ’a‘ than a numerical one. Rhetoric was considered a techné in antiquity. Drawing on this
Paul Ricoeur explains, “fechné is something more refined than a routine or an empiri-
. cal practice and in spite of its focus on production, it contains a speculative element.”*
-’D‘Y_,unwe' ‘A technical relation engages art or craft. A technical person is one “skilled in or practi-
cally conversant with some particular art or subject.”** Code does not always or auto-
E gy Imatically do what it says, but it does so in a crafty, speculative manner in which
meaning and action are both created. It carries with it the possibility of deviousness:
our belief that compilers simply expand higher-level commands—rather than alter or
insert other behaviors—is simply that, a belief, one of the many that sustain comput-
ing as such. This belief glosses over the fact that source code only becomes a source after
the fact. Execution, and a whole series of executions, belatedly makes some piece of
code a source, which is again why source code, among other things, was initially called

pseudocode.

Source code is more accurately a re-source, rather than a source. Source code becomes
the source of an action only after it—or more precisely its executable substitute—
expands to include software libraries, after its executable version merges with code
burned into silicon chips; and after all these signals are carefully monitored, timed,

On Sourcery and Source Codes 25

and rectified. Source code becomes a source only through its destruction, through its
simultaneous nonpresence and presence.” (Thus, to return to the historical difficulties
of analyzing software outlined by Mahoney, every software run is to some extent a
reconstruction.) Source code as techné, as a generalized writing, is spectral. It is neither
dead repetition nor living speech; nor is it a machine that erases the difference
between the two. It, rather, puts in place a “relation between life and death, between
present and representation, between two apparatuses.”*® As I elaborate throughout this
book, information—through its capture in memory—is undead.

Source Code, after the Fact

Early on, the difficulties of code as source were obvious. Herman H. Goldstine and
John von Neumann emphasized the dynamic nature of code in their “Planning and
Coding of Problems for an Electronic Computing Instrument.” In it, they argued that
coding, despite the name, is not simply the static translation of “a meaningful text
(the instructions that govern solving the problem under consideration) from one
language (the language of mathematics, in which the planner will have conceived the
problem, or rather the numerical procedure by which he has decided to solve the
problem) into another language (that of our code).””” Because code does not unfold
linearly, because its value depends on intermediate results, and because code can be
modified as it is run (self-modifying code), “it will not be possible in general to foresee
in advance and completely the actual course of C [the sequence of codes].” Therefore,
“coding is . . . the technique of providing a dynamic background to control the auto-

hovx?z_%a.

?\,-LMQ__

cole &2

matic evolution of a meaning.”*® Code as “dead repetition,” in other words, has always \\-H“"‘W’“

been regenerative and interactive; every iteration alters its meaning. Even given the
limits to iterability that Hayles has presciently outlined in My Mother Was a Computer—
limits due to software as axiomatic—coding still means producing a mark, a writing,
open to alteration/iteration rather than an airtight anchor.”’

opern o
amrx{\%

Much disciplinary effort has been required to make source code readable as the .~

source. Structured programming, which I examine in more detail later, sought to rein
in “goto crazy” programmers and self-modifying code. A response to the much-
discussed “software crisis” of the late 1960s, its goal was to move programming from
a craft to a standardized industrial practice by creating disciplined programmers who
dealt with abstractions rather than numerical processes.*

Making code the source also entails reducing hardware to memory and thus erasing
the existence and possibility of hardware algorithms. Code is also not always the
source because hardware does not need software to “do something.” One can build
algorithms using hardware. Figure 1.1, for instance, is the logical statement: if notB
and notA, do CMD1 (state P); if notB and notA and notZ OR B and A (state Q) then
command 2.

o
ww‘“j/z

absvud

oA
(>
-

26

Chapter 1

Combinational Logic

% =
p— S—— cmp2.u

P

e

| \
Command

ZH f D“ 7 1
Status ; outputs
input
h—_;:d i CMDIH
® | /

AH [b | A®H

——

> |

B,H [| B(D)H
—e Dp— |

SYSCLK, H

State flip flops

Figure 1.1
Logic diagram for a hardware algorithm

To be clear, I am not valorizing hardware over software, as though hardware natu-
rally escapes this drive to make space signify time. Crucially, this schematic is itself
an abstraction. Logic gates can only operate “logically”—as logos—if they are carefully
timed. As Philip Agre has emphasized, the digital abstraction erases the fact that gates
have “directionality in both space (listening to its inputs, driving its outputs) and in
time (always moving toward a logically consistent relation between these inputs and
outputs).”’ When a value suddenly changes, there is a brief period in which a gate
will give a false value. In addition, because signals propagate in time over space, they
produce a magnetic field that can corrupt other nearby signals (known as crosstalk).
This schematic erases all these various time- and distance-based effects by rendering
space blank, empty, and banal. Thus hardware schematics, rather than escaping from
the logic of sourcery, are also embedded within this structure. Indeed, as chapter 4
elaborates, John von Neumann, the generally acknowledged architect of the stored-
memory digital computer, drew from Warren McCulloch and Walter Pitts’s conflation
of neuronal activity with its inscription in order to conceptualize modern computers.
It is perhaps appropriate then that von Neumann, who died from a cancer stemming

On Sourcery and Source Codes 27

from his work at Los Alamos, spent the last days of his life reciting from memory Faust
Part 1.** At the source of stored program computing lies the Faustian erasure of word
for action.

The notion of source code as source coincides with the introduction of alphanu-
meric languages. With them, human-written, nonexecutable code becomes source
code and the compiled code, the object code. Source code thus is arguably symptom-
atic of human language’s tendency to attribute a sovereign source to an action, a
subject to a verb.” By converting action into language, source code emerges. Thus,
Galloway’s statement, “To see code as subjectively performative or enunciative is to
anthropomorphize it, to project it onto the rubric of psychology, rather than to under-

stand it through its ow';l—l'o-gic of ‘calculation’ or ‘command,”” overlooks the fact that
to use higher-level alphanumeric languages is already to anthropomorphize the
machine. It is to embed computers in “logic” and to reduce all machinic actions to
the commands that supposedly drive them. In other words, the fact that “code is
law”—something legal scholar Lawrence Lessig emphasizes—is hardly profound.*
After all, code is, according to the OED, “a systematic collection or digest of the laws
of a country, or of those relating to a particular subject.” What is surprising is the fact
that software is code; that code is—has been made to be—executable, and this execut-
ability makes code not law, but rather every lawyer’s dream of what law should be:
automatically enabling and disabling certain actions, functioning at the level of
everyday practice.”

Code is executable because it embodies the power of the executive, the power
of enforcement that has traditionally—even within classic neoliberal logic—been
the provenance of government.’® Whereas neoliberal economist and theorist Milton
Friedman must concede the necessity of government because of the difference
between “the day-to-day activities of people [and] the general customary and legal
framework within which these take place,” code as self-enforcing law “privatizes”
this function, further reducing the need for government to enforce the rules by
which we play.”” In other words, if as Foucault argues neoliberalism expands judicial
interventions by reducing laws to “the rules for a game in which each remains
master regarding himself and his part,” then “code is law” reins in this expansion
by moving enforcement from police and judicial functions to software functions.*®
“Code is law,” in other words, automatically brings together disciplinary and sov-
ereign power through the production of self-enforcing rules that, as von Neumann
argues, “govern” a situation.

“Code is law” makes clear the desire for sovereign power driving both source
code and performative utterances more generally. David Golumbia—looking more
generally at widespread beliefs about computers—has insightfully claimed: “The
computer encourages a Hobbesian conception of this political relation: one is
the person who makes and gives orders (the sovereign), or one follo G

Pie) i

(oo

?ow

28 Chapter 1

This conception, which crucially is also constantly undone by modern computa-
tion’s twinning of empowerment with ignorance, depends, I argue, on this confla-
tion of code with the performative. As Judith Butler has argued in Excitable Speech,
Austinian understandings of performative utterances as simply doing what they say
posit the speaker as “the judge or some other representative of the law.”* It resus-
citates fantasies of sovereign—that is executive (hence executable)—structures of power:
Tt is “a wish to return to a simpler and more reassuring map of power, one in
which the assumption of sovereignty remains secure.”*' This wish for a simpler map
of power—indeed power as mappable—drives not only code as automatically execut-
able, but also, as the next chapter contends, interfaces more generally. This wish
is central to computers as machines that enable users/programmers to navigate
neoliberal complexity.

Against this nostalgia, Butler, following Jacques Derrida, argues that iterability lies
behind the effectiveness of performative utterances. For Butler, iterability is the process
by which “the subject who ‘cites’ the performative is temporarily produced as the belated
and fictive origin of the performative itself.”** The programmer/user, in other words, is
produced through the act of programming. Moreover, the effectiveness of performa-
tive utterances, Butler also emphasizes, is intimately tied to the community one joins
and to the rituals involved—to the history of that utterance. Code as law—as a judicial
process—is, in other words, far more complex than code as logos. Similarly, as

Weizenbaum has argued, code understood as a judicial process undermines the
control of the programmer:

A large program is, to use an analogy of which Minsky is also fond, an intricately connected
network of courts of law, that is, of subroutines, to which evidence is transmitted by other
subroutines. These courts weigh (evaluate) the data given to them and then transmit their
judgments to still other courts. The verdicts rendered by these courts may, indeed, often do,
involve decisions about what court has “jurisdiction” over the intermediate results then being
manipulated. The programmer thus cannot even know the path of decision-making within his
own program, let alone what intermediate or final results it will produce. Program formulation

is thus rather more like the creation of a bureaucracy than like the construction of a machine
of the kind Lord Kelvin may have understood.*

Code as a judicial process is code as thing: the Latin term for thing, res, survives in
legal discourse (and, as I explain later, literary theory). The term res, as Heidegger
notes, designates a “gathering,” any thing or relation that concerns man.* The rela-
tions that Weizenbaum discusses, these bureaucracies within the machine, as the rest
of this chapter argues, mirror the bureaucracies and hierarchies that historically made
computing possible. Importantly, this description of computers as following a set of
rules that programmers must follow—Weizenbaum’s insistence on the programmer’s
ignorance—does not undermine the resonances between neoliberalism and computa-
tion; if anything, it makes these resonances more clear. It also clarifies the desire

On Sourcery and Source Codes 29

driving code as logos as a solution to neoliberal chaos. Foucault, emphasizing the
rhetoric of the economy as a “game” in neoliberal writings, has argued, “both for
the state and for individuals, the economy must be a game: a set of regulated activi-
ties . . . in which the rules are not decisions which someone takes for others. It is a
set of rules which determine the way in which each must play a game whose outcome
is not known by anyone.”* Although small-s sovereigns proliferate through neolib-
eralism’s empowered yet endangered subjects, it still fundamentally denies the posi-
tion of the Sovereign who knows—a position that we nonetheless nostalgically desire
. . . for ourselves.

Yes, Sir!

This conflation of instruction with result stems in part from software’s and comput-
ing’s gendered, military history: in the military there is supposed to be no difference
between a command given and a command completed—especially to a computer that
is a “girl.” For computers, during World War II, were in fact young women with some
background in mathematics. Not only were women available for work during that era,
they also were considered to be better, more conscientious computers, presumably
because they were better at repetitious, clerical tasks. They were also undifferentiated:
they were all unnamed “computers,” regardless of their mathematical training.*® These
computers produced ballistics tables for new weapons, tables designed to control ser-
vicemen'’s battlefield actions. Rather than aiming and shooting, servicemen were to
set their guns to the proper values (not surprisingly, these tables and gun governors
were often ignored or ditched by servicemen).*

The women who became the “ENIAC girls” (later the more politically correct
“women of the ENIAC”)—Kathleen/Kay McNulty (Mauchly Antonelli), Jean Jennings
(Bartik), Frances Snyder (Holberton), Marlyn Wescoff (Meltzer), Frances Bilas (Spence),
and Ruth Lichterman (Teitelbaum) (married names in parentheses)—were computers
who volunteered to work on a secret project (when they learned they would be operat-
ing a machine, they had to be reassured that they had not been demoted). Program-
mers were former computers because they were best suited to prepare their successors:
they thought and acted like computers. One could say that programming became
programming and software became software when the command structure shifted
from commanding a “girl” to commanding a machine. Kay Mauchly Antonelli
described the “evolution” of computing as moving from female computers using
Marchant machines to fill in fourteen-column sheets (which took forty hours to com-
plete the job), to using differential analyzers (fifteen minutes to do the job), to using
the ENIAC (seconds).*®

Software languages draw from a series of imperatives that stem from World War
II command and control structures. The automation of command and control, which

30 Chapter 1

Paul Edwards has identified as a perversion of military traditions of “personal leader-
ship, decentralized battlefield command, and experience-based authority,”* arguably
started with World War Il mechanical computation. Consider, for instance, the rela-
tionship between the volunteer members of the Women’s Royal Naval Service (called
Wrens), and their commanding officers at Bletchley Park. The Wrens also (perhaps
ironically) called slaves by the mathematician and “founding” computer scientist
Alan Turing (a term now embedded within computer systems), were clerks responsible
for the mechanical operation of the cryptanalysis machines (the Bombe and then
the Colossus), although at least one of the clerks, Joan Clarke (Turing’s former fiancé),
became an analyst. Revealingly, I. J. Good, a male analyst, describes the Colossus as
enabling a man-machine synergy duplicated by modern machines only in the late
1970s: “the analyst would sit at the typewriter output and call out instructions to a
Wren to make changes in the programs. Some of the other uses were eventually
reduced to decision trees and were handed over to the machine operators (Wrens).”*
This man-machine synergy, or interactive real-time (rather than batch) processing,
treated Wrens and machines indistinguishably, while simultaneously relying on the
Wrens’ ability to respond to the mathematician’s orders. This “interactive” system
also seems evident in the ENIAC's operation: in figure 1.2, a male analyst issues
commands to a female operator.

The story of the initial meeting between Grace Murray Hopper (one of the first and
most important programmer-mathematicians) and Howard Aiken would also seem to
buttress this narrative. Hopper, with a PhD in mathematics from Yale, and a former
mathematics professor at Vassar, was assigned by the U.S. Navy to program the Mark
1, an electromechanical digital computer that made a sound like a roomful of knitting
needles. According to Hopper, Aiken showed her “a large object with three stripes. ..
waved his hand and said: ‘That’s a computing machine.’ I said, ‘Yes, Sir.” What else
could I say? He said he would like to have me compute the coefficients of the arc
tangent series, for Thursday. Again, what could I say? ‘Yes, Sir.” I didn’t know what on
earth was happening, but that was my meeting with Howard Hathaway Aiken.”"
Computation depends on “Yes, Sir” in response to short declarative sentences and
imperatives that are in essence commands. Contrary to Neal Stephenson, in the
beginning—marking the possibility of a beginning—was the command rather than the
command line.*” The command line is a mere operating system (OS) simulation. Com-
mands have enabled the slippage between programming and action that makes soft-
ware such a compelling yet logically “trivial” communications system.>* Commands
lie at the core of the cybernetic conflation of human with machine.** 1. J. Good’s and
Hopper’s recollections also reveal the routinization at the core of programming: the
analyst’s position at Bletchley Park was soon replaced by decision trees acted on by the
Wrens. Hopper, self-identified as a mathematician (not programmer), became an
advocate of automatic programming. Thus routinization or automation lies at the

On Sourcen and Sonrce Cades "

==
‘. '[&“;__;:d_,; ¥ ~ 'a' o. :_ . ¢
o Voyais vl‘ L P
A o [TSRS N o 2
E
1
/ ——
N [
, L]
-
-
hd * 9
. iy
s SR i
[
v! e & W ," g b
- “ R
~ %l LR e w0 Ted UG, e
A R Py ! s - i saaeend (i ¢ g e
= '-'"5;;‘;-\ MEtal o & b 25 s&u&d&éﬁz s
Figure 1.2

ENIAC programmers, late 1940s. U.S. military photo, Redstone Arsenal Archives, Huntsville,
Alabama.

core of a profession that likes to believe it has successfully automated every profession
but its own.*

This narrative of the interchangeability of women and software, however, is not
entirely true: the perspective of the master, as Hegel famously noted, is skewed.
(Tellingly, Mephistopheles offers to be Faust’s servant.)*® The master depends on the
slave entirely, and it is the slave’s actions that make possible another existence. Execu-
tion is never simple. Hopper’s “Yes, Sir” actually did follow in the military command
tradition. It was an acceptance of responsibility; she was not told how to calculate the
trajectory. Also, the “women of the ENIAC,” although an afterthought, played an
important role in converting the ENIAC into a stored-program computer and in deter-
mining the trade-off between storing values and instructions: they did not simply
operate the machine, they helped shape it and make it functional.*” Users of the ENIAC

usually were divided into pairs: one who knew the problem and one who knew _E_l}e
= d, SIS S s 5 . = 1 W

32 Chapter 1

machine “so the limitations of the machine could be fitted to the problem and the
problem could be changed to fit the limitations.”*® Programming the ENIAC—that is,
wiring the components together in order to solve a problem—was difficult, especially
since there were no manuals or exact precedents.* To solve a problem, such as how
to determine ballistics trajectories for new weapons, ENIAC “programmers” had first
to break down the problem logically into a series of small yes/no decisions; “the
amount of work that had to be done before you could ever get to a machine that was
really doing any thinking,” Bartik relates, was staggering and annoying.*® The unreli-
ability of the hardware and the fact that engineers and custodians would unexpectedly
change the switches and program cables compounded the difficulty.®!

These women, Holberton in particular, developed an intimate relation with the
“master programmer,” the ENIAC's control device. Although Antonelli first figured out
how to repeat sections of the program, using the master programmer, Holberton, who

described herself as a logician, specialized in controlling its operation.®* As Bartik
explains:

We found it very easy to learn that you do this step, step one, then you do step two, step three,
but I think the thing that was the hardest for us to learn was transfer of control which the
ENIAC did have through the master programmer, so that you would be able to repeat pieces of
program. So, the techniques for dividing your program into subroutines that could be repeated
and things of this kind was the hardest for us to understand. I certainly know it was for me.”

Because logic diagrams did not then exist, Holberton developed a four-color pencil
system to visualize the workings of the master programmer.®* This drive to visualize
also extended to the machine as a whole. To track the calculation, holes were drilled
in the panels over the accumulators so that “when you were doing calculations these
lights were flashing as the numbers built up and as you transferred numbers and things
of this kind. So you had the feeling of excitement.”® These lights not only were useful
in tracking the machine, they also were invaluable for the demonstration. Even
though the calculation for the demonstration was itself buggy, the flashing lights, the
cards being read and written, gave the press a (to them) incomprehensible visual
display of the enormity and speed of the calculation being done. In what would
become a classic programming scenario, the problem was “debugged” the day after
the demonstration. According to Holberton:

I think the next morning, I woke up and in the middle of the night thinking what that
error was. I came in, made a special trip on the early train that morning to look at a certain
wire, and you know, it’s the same kind of programming error that people make today. It's
the, the decision on the terminal end of a do loop, speaking Fortran language, had the wrong
value, Forgetting that zero was also one setting and the setting of the switch was one off.
And I'll never forget that because there it was my first do loop error. But it went on that
way and | remember telling Marlyn, I said, “If anybody asks why it’s printing out that way,
say it’s supposed to be that way.” [Laughter]®

On Sourcery and Source Codes 33

Programming enables a certain duplicity, as well as the possibility of endless actions
that animate the machine. Holberton, described by Hopper as the best programmer
she had known, would also go on to develop an influential SORT algorithm for the
UNIVAC 1 (the Universal Automatic Computer 1, a commercial offshoot of the
ENIAC).*” Indeed, i“nany of these women were hired by the Eckert-Mauchly company
to become the first programmers of the UNIVAC, and were transferred to Aberdeen to
train more ENIAC programmers.

Drawing from the historical importance of women and the theoretical resonances
between the feminine and computing (parallels between programming and what
Freud called the quintessentially feminine invention of weaving, between female sexu-
ality as mimicry and Turing’s vision of computers as universal machines/mimics) Sadie
Plant has argued that computing is essentially feminine. Both software and feminine
sexuality reveal the power that something that cannot be seen can have.”® Women,
Plant argues, “have not merely had a minor part to play in the emergence of digital
machines. . . . Theirs is not a subsidiary role which needs to be rescued for posterity,
a small supplement whose inclusion would set the existing records straight. . . . Hard-
ware, software, wetware—before their beginnings and beyond their ends, women have
been the simulators, assemblers, and programmers of the digital machines.”®’ Because
of this and women’s early (forced) adaptation to “flexible” work conditions, Plant
argues, women are best prepared to face our digital, networked future: “sperm count,”
she writes, “falls as the replicants stir and the meat learns how to learn for itself.
Cybernetics is feminisation.”” Responding to Plant’s statement, Alexander Galloway
has argued, “the universality of [computer] protocol can give feminism something
that it never had at its disposal, the obliteration of the masculine from beginning to
end.””" Protocol, Galloway asserts, is inherently antipatriarchy. What, however, is the
relationship between feminization and feminism, between so-called feminine modes
of control and feminism? What happens if you take seriously Grace Murray Hopper’s
claims that the term software stemmed from her description of compilers as “layettes”
for computers and the claim of J. Chuan Chu, one of the hardware engineers for the
ENIAC, that software is the “daughter” of Frankenstein (hardware being the son)?”?

To address these questions, we need to move beyond recognizing these women as
programmers and the resonances between computers and the feminine. Such recogni-
tion alone establishes a powerful sourcery, in which programming is celebrated at the
exact moment that programmers become incapable of “understanding”—of seeing
through—the machine. The move to reclaim the ENIAC women as the first program-
mers in the mid- to late-1990s occurred when their work as operators—and the visual,
intimate knowledge of machine operations this entailed—had become entirely incor-
porated into the machine and when women “coders” were almost definitively pushed
out of the workplace. It is love at last (and first) sight, not just for these women but
also for these interfaces, which really were transparent holes, in which inside and

On Sourcery and Source Codes 49

Source Code as Fetish

Source code as source means that software functions as an axiom, as “a self-evident
proposition requiring no formal demonstration to prove its truth, but received and
assented to as soon as it is mentioned.”' In other words, whether or not source code
is only a source after the fact or whether or not software can be physically separated
from hardware,'*® software is always posited as already existing, as the self-evident
ground or source of our interfaces. Software is axiomatic. As a first principle, it fastens
in place a certain neoliberal logic of cause and effect, based on the erasure of execution
and the privileging of programming that bleeds elsewhere and stems from elsewhere as
well.’*® As an axiomatic, it, as Gilles Deleuze and Félix Guattari argue, artificially limits
decodings." It temporarily limits what can be decoded, put into motion, by setting up
an artificial limit—the artificial limit of programmability—that seeks to separate infor-
mation from entropy, by designating some entropy information and other “non-
intentional” entropy noise. Programmability, discrete computation, depends on
the disciplining of hardware and programmers, and the desire for a programmable
axiomatic code. Code, however, is a medium in the full sense of the word. As a

50 Chapter 1

medium, it channels the ghost that we imagine runs the machine—that we see as we
don’t see—when we gaze at our screen’s ghostly images.

Understood this way, source code is a fetish. According to the OED, a fetish was
originally an ornament or charm worshipped by “primitive peoples . . . on account
of its supposed inherent magical powers.”"*' The term fetisso stemmed from the trade
of small wares and magic charms between the Portuguese merchants and West
Africans; Charles de Brosses coined the term fetishism to describe “primitive religions”
in 1757. According to William Pietz, Enlightenment thinkers viewed fetishism as a
“false causal reasoning about physical nature” that became “the definitive mistake of
the pre-enlightened mind: it superstitiously attributed intentional purpose and desire
to material entities of the natural world, while allowing social action to be determined
by the . . . wills of contingently personified things, which were, in truth, merely the
externalized material sites fixing people’s own capricious libidinal imaginings.”'*? That
is, fetishism, as “primitive causal thinking,” derived causality from “things”—in all
the richness of this concept—rather than from reason:

Failing to distinguish the intentionless natural world known to scientific reason and motivated
by practical material concerns, the savage (so it was argued) superstitiously assumed the exis-
tence of a unified causal field for personal actions and physical events, thereby positing reality
as subjecﬁg animate powers whose purposes could be divined and influenced. Specifically,
humanity’s belief in gods and supernatural powers (that is, humanity’s unenlightenment) was
theorized in terms of prescientific peoples’ substitution of imaginary personifications for the
unknown physical causes of future events over which people had no control and which they
regarded with fear and anxiety.'?

A fetish allows one to visualize what is unknown—to substitute images for causes.
Fetishes allow the human mind both too much and not enough control by establish-
ing a “unified causal field” that encompasses both personal actions and physical
events. Fetishes enable a semblance of control over future events—a possibility of
influence, if not an airtight programmability—that itself relies on distorting real social
relations into material givens.

This notion of fetish as false causality has been most important to Karl Marx’s
diagnosis of capital as fetish. Marx famously argued:

the commodity-form . . . is nothing but the determined social relation between men themselves
which assumes here, for them, the phantasmagoric form of a relation between things. In order,
therefore, to find an analogy we must take a flight into the misty realm of religion. There the
products of the human head appear as autonomous figures endowed with a life of their own,
which enter into relations both with each other and with the human race. So it is in the world
of commodities with the products of men’s hands. I call this the . . . fetishism."*

The capitalist thus confuses social relations and the labor activities of real individuals
with capital and its seemingly magical ability to reproduce. For, “it is in interest-

On Sourcery and Source Codes 51

bearing capital . . . that capital finds its most objectified form, its pure fetish form.
. . . Capital—as an entity—appears here as an independent source of value; a some-
thing that creates value in the same way as land [produces] rent, and labor wages.”'*
Both these definitions of fetish also highlight the relation between things and men:
men and things are not separate, but rather speak with and to one another. That is,
things are not simply objects that exist outside the human mind, but are rather tied

to events, to the timing of events.

The parallel to source code seems obvious: we “primitive folk” worship source
code as a magical entity—as a source of causality—when in truth the power lies
elsewhere, most importantly, in social and machinic relations. If code is performa-
tive, its effectiveness relies on human and machinic rituals. Intriguingly though, in
this parallel, Enlightenment thinking—a belief that knowing leads to control, to a
release from tutelage—is not the “solution” to the fetish, but, rather, what grounds
it, for source code historically has been portrayed as the solution to wizards and
other myths of programming: machine code provokes mystery and submission; source
code enables understanding and thus institutes rational thought and freedom. Knowl-
edge, according to Weizenbaum, sustains the hacker’s aimless actions. To offer a
more current example of this logic than the FORTRAN one cited earlier, Richard
Stallman, in his critique of nonfree software, has argued that an executable program
“is a mysterious bunch of numbers. What it does is secret.”** Against this magical
execution, source code supposedly enables an understanding and a freedom—the
ability to map and know the workings of the machine, but, again, only through a
magical erasure of the gap between source and execution, an erasure of execution
itself. If we consider source code as fetish, the fact that source code has hardly
deprived programmers of their priestlike/wizard status makes complete sense. If any-
thing, such a notion of programmers as superhuman has been disseminated ever
more and the history of computing—from direct manipulation to hypertext—has
been littered by various “liberations.” _

But clearly, source code can do and be things: it can be interpreted or compiled; it
can be rendered into machine-readable commands that are then executed. Source code
is also read by humans and is written by humans for humans and is thus the source
of some understanding. Although Ellen Ullman and many others have argued, “a
computer program has only one meaning: what it does. It isn’t a text for an academic
to read. Its entire meaning is its function,” source code must be able to function, even
if it does not function—that is, even if it is never executed.'™” Source code’s readability
is not simply due to comments that are embedded in the source code, but also due to
English-based commands and programming styles designed for comprehensibility.
This readability is not just for “other programmers.” When programming, one must

be able to read one’s own program—to follow its logic and to predict its outcome,
whether or not this outcome coincides with one’s prediction.

’Tlu\‘y a3
et {4~
PYV Ior 3

52 Chapter 1

This notion of source code as readable—as creating some outcome regardless of its
machinic execution—underlies “codework” and other creative projects. The Internet
artist Mez, for instance, has created a language called mezangelle that incorporates
formal code and informal speech. Mez's poetry deliberately plays with programming
syntax, producing language that cannot be executed, but nonetheless draws on the
conventions of programming language to signify.'*®* Codework, however, can also work
entirely within an existing programming language. Graham Harwood’s perl poem, for
example, translates William Blake’s nineteenth-century poem “London” into London.
pl, a script that contains within it an algorithm to “find and calculate the gross lung-
capacity of the children screaming from 1792 to the present.”'* Regardless of whether
or not it can execute, code can be—must be—worked into something meaningful,
Source code, in other words, may be the source of things other than the machine
execution it is “supposed” to engender.

Source code as fetish, understood psychoanalytically, embraces this nonteleologi-
cal potential of source code, for the fetish is a deviation that does not “end” where
it should. It is a genital substitute that gives the fetishist nonreproductive pleasure.
It allows the child to combat castration—his inscription within the world of paternal
law and order—for both himself and his mother, while at the same time accom-
modating to his world’s larger oedipal structure. It both represses and acknowledges
paternal symbolic authority. According to Freud, the fetish, formed the moment
the little boy discovers his mother’s “lack,” is “a substitute for the woman’s (moth-
er’s) phallus which the little boy once believed in and does not wish to forego.”'®
As such, it both fixes a singular event—turning time into space—and enables a
logic of repetition that constantly enables this safeguarding. As Pietz argues, “the
fetish is always a meaningful fixation of a singular event; it is above all a ‘histori-
cal’ object, the enduring material form and force of an unrepeatable event. This
object is ‘territorialized’ in material space (an earthly matrix), whether in the form
of a geographical locality, a marked site on the surface of the human body, or a
medium of inscription or configuration defined by some portable or wearable
thing.”'®’ Even though it fixes a singular event, the fetish works only because it
can be repeated, but again, what is repeated is both denial and acknowledgment,
since the fetish can be “the vehicle both of denying and asseverating the fact of

castration.”'®* Slavoj Zizek draws on this insight to explain the persistence of the
Marxist fetish:

When individuals use money, they know very well that there is nothing magical about
it—that money, in its materiality, is simply an expression of social relations . . . on an
everyday level, the individuals know very well that there are relations between people behind
the relations between things. The problem is that in their social activity itself, in what they
are doing, they are acting as if money, in its material reality is the immediate embodiment
of wealth as such. They are fetishists in practice, not in theory. What they “do not know,”

On Sourcery and Source Codes 53

what they misrecognize, is the fact that in their social reality itself—in the act of commodity
exchange—they are guided by the fetishistic illusion.'s?

Fetishists, importantly, know what they are doing—knowledge, again, is not an answer
to fetishism, but rather what sustains it. The knowledge that source code offers is no
cure for source code fetishism: if anything, this knowledge sustains it. As the next
chapter elaborates, the key question thus is not “what do we know?” but rather “what
do we do?”

To make explicit the parallelﬁource code, like the fetish, is a conversion of event
into location—time into space—that does affect things, although not necessarily in
the manner prescribed. Its effects can be both productive and nonexecutable. Also, in
terms of denial and acknowledgment, we know very well that source code in that state
and without the intercession of other “layers” is not executable, yet we persist in
treating it as so. And it is this glossing over that makes possible the ideological belief
in programmability.

Code as fetish means that computer execution deviates from the so-called source,
as source program does from programmer. Turing, in response to the objection that
computers cannot think because they merely follow human instructions, contends:

Machines take me by surprise with great frequency. . . . The view that machines cannot give
rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are
particularly subject. This is the assumption that as soon as a fact is presented to a mind all
consequences of that fact spring into the mind simultaneously with it. It is a very useful
assumption under many circumstances, but one too easily forgets that it is false. A natural
consequence of doing so is that one then assumes that there is no virtue in the mere working
out of consequences from data and general principles.'**

This erasure of the vicissitudes of execution coincides with the conflation of data
with information, of information with knowledge—the assumption that what is most
difficult is the capture, rather than the analysis, of data. This erasure of execution
through source code as source creates an intentional authorial subject: the computer,
the program, or the user, and this source is treated as the source of meaning. The
fact that there is an algorithm, a meaning intended by code (and thus in some way
knowable), sometimes structures our experience with programs. When we play a
game, we arguably try to reverse engineer its algorithm or at the very least link its
actions to its programming, which is why all design books warn against coincidence
or random_mapping, since it can induce paranoia in its users. That is, because an
interface is programmed, most users treat coincidence as meanin:gful. To the user, as
with the paranoid schizophrenic, there is always meaning: whether or not the user
knows the meaning, s/he knows that it regards him or her. To know the code is to
have a form of “X-ray vision” that makes the inside and outside coincide, and the
act of revealing sources or connections becomes a critical act in and of itself.'*> Code

54 Chapter _I

as source leads to that bizarre linking of computers to visual culture, to transparen
which constitutes the subject of chapter 2. o .

Code as fetish thus underscores code as thing: code as a “dirty windoy, Pane »
rather than as a window that leads us to the “source.” Code as fetish emphaSizés
code as a set of relations, rather than as an enclosed object, and it highlights botp,
the ambiguity and the specificity of code. Code points to, it indic.ates, SOmethjp
both specific and nebulous, both defined and undefinable. Code, again, is an abstrac.
tion that is haunted, a source that is a re-source, a source that renders the Machinjc__
with its annoying specificities or “bugs”—ghostly. As Thomas Keenan argues,
“haunting can only be thought as the difficult (simtltaneous and impossible) Move.
ment of remembering and forgetting, inscribing and erasing, the singular ang the
different.”'*® Embracing software as thing, in theory and in practice, Opens us to the
ways in which the fact that we cannot know software can be an enabling condition:

a way for us to engage the surprises generated by a programmability that, try as it
might, cannot entirely prepare us for the future.

)

